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Abstract
The position and momentum information entropies of D-dimensional quantum
systems with central potentials, such as the isotropic harmonic oscillator and the
hydrogen atom, depend on the entropies of the (hyper)spherical harmonics. In
turn, these entropies are expressed in terms of the entropies of the Gegenbauer
(ultraspherical) polynomials C(λ)

n (x), the parameter λ being either an integer
or a half-integer number. Up till now, however, the exact analytical expression
of the entropy of Gegenbauer polynomials of arbitrary degree n has only
been obtained for the particular values of the parameter λ = 0, 1, 2. Here
we present a novel approach to the evaluation of the information entropy of
Gegenbauer polynomials, which makes use of trigonometric representations
for these polynomials and complex integration techniques. Using this method,
we are able to find the analytical expression of the entropy for arbitrary values
of both n and λ ∈ N.

PACS numbers: 03.67.−a, 02.30.Gp
Mathematics Subject Classification: 30E20, 33B10, 33C45, 33F10, 42C05,
81Q99, 94A17

1. Introduction

According to Shannon’s information theory [1], the only rigourous measure of the uncertainty
or lack of information associated with a continuous random variable X with a density function
ρ(x), x ∈ R

D , is the entropy

H(X) = −
∫

ρ(x) log ρ(x) dx. (1)
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In particular, when ρ(x) is the single-particle probability density for the position of a quantum
system, H(X) is the only rigourous measure of the uncertainty in the localization of the
particle in position space. The momentum entropy H(P ) can be defined likewise from the
single-particle density of momentum γ (p). In the simplest case of a single-particle system
described in position space by the wavefunction ψ(x), we have that ρ(x) = |ψ(x)|2 and
γ (p) = |φ(p)|2, where the wavefunction in momentum space φ(p) is the Fourier transform
of ψ(x). The sharp inequality [2, 3]

H(X) + H(P ) � D (1 + log π) (2)

places a nontrivial lower bound on the sum of the uncertainties in position and momentum,
so it provides a quantitative formulation of the position–momentum uncertainty principle.
Using the variational inequality that relates information entropy and standard deviation for an
arbitrary D-dimensional random variable [1, 3],

H(A) � D

2

(
1 + log

2π(�A)2

D

)
, (3)

the entropic uncertainty relation (2) leads to the well-known Heisenberg uncertainty relation

�X�P � D

2
, (4)

which proves the former to be stronger than the latter.
For many important quantum systems, such as D-dimensional harmonic oscillator and

hydrogen atom, the calculation of position and momentum information entropies involves the
evaluation of integrals of the form

E(pn) = −
∫ b

a

(pn(x))2 log(pn(x))2ω(x) dx, (5)

where {pn(x)} denotes a polynomial sequence (degpn(x) = n) orthogonal on [a, b] ⊆ R with
respect to the weight function ω(x). During the last decade there has been an intense activity
in the study of these integrals, motivated not only by their relevance to quantum physics but
also by their close relationship to other interesting mathematical objects, such as the Lp-norms
or the logarithmic potentials of the polynomials pn(x). A survey on the state of the art in this
field up to year 2001 can be found in [4].

The calculation of the entropic integrals E(pn) is generally a very difficult task, and in
most cases only asymptotic results for large values of n are known [4]. In fact, since all
the zeros of pn are simple and belong to (a, b), when n is not very small even a numerical
computation of E(pn) poses serious difficulties due to the strongly oscillatory behaviour of
the integrand in (5). In this respect it is worth mentioning [5], which presents an efficient
algorithm for the numerical evaluation of E(pn) in the case when the interval (a, b) is finite.

Closed analytical formulae for E(pn) are only known for a few particular cases of the
Gegenbauer or ultraspherical polynomials C(λ)

n . We recall that these polynomials are defined
as (see, e.g., [6, section 4.7])

C(λ)
n (x) = (2λ)n(

λ + 1
2

)
n

P
(λ− 1

2 ,λ− 1
2 )

n (x), (6)

where (a)n = 	(a + n)/	(a) denotes the Pochhammer symbol and P
(α,β)
n (x) are Jacobi

polynomials,

P (α,β)
n (x) = (α + 1)n

n!
2F1

(−n, n + α + β + 1
α + 1

∣∣∣∣1 − x

2

)
. (7)
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For λ > − 1
2 , Gegenbauer polynomials form an orthogonal sequence on the interval [−1, 1]

with respect to the weight function wλ(x) = (1 − x2)λ− 1
2 ,∫ 1

−1
C(λ)

n (x)C(λ)
m (x)(1 − x2)λ− 1

2 dx = 21−2λπ	(n + 2λ)

(n + λ)n![	(λ)]2
δn,m. (8)

The information entropies of Gegenbauer polynomials, on which we focus in the present
paper, are thus given by

E
(
C(λ)

n

) = −
∫ 1

−1

(
C(λ)

n (x)
)2

log
(
C(λ)

n (x)
)2

(1 − x2)λ− 1
2 dx. (9)

The integrals E
(
C(λ)

n

)
are especially relevant in the case when λ is a non-negative

integer or half-integer number, due to the relationship between the corresponding Gegenbauer
polynomials and (hyper)spherical harmonics. As a consequence, these integrals appear in the
calculation of the angular component of information entropies in both position and momentum
space for any D-dimensional (D � 2) quantum-mechanical system with a central potential,
such as the isotropic harmonic oscillator or the hydrogen atom (radially symmetric Coulomb
potential) [4, 7–9]. They also control the radial component of the information entropy in
momentum space for the D-dimensional hydrogen atom [4, 7, 8].

Instead of using the standard definition of Gegenbauer polynomials, it is often more
convenient to work with the polynomials

Ĉ(λ)
n (x) =

(
(n + λ)n!

λ(2λ)n

)1
2

C(λ)
n (x), (10)

which are orthonormal on [−1, 1] with respect to the probability density

ŵλ(x) = 	(λ + 1)√
π	

(
λ + 1

2

) (1 − x2)λ− 1
2 . (11)

The corresponding entropies,

E
(
Ĉ(λ)

n

) = −
∫ 1

−1

[
Ĉ(λ)

n (x)
]2

log
[
Ĉ(λ)

n (x)
]2

ŵλ(x) dx, (12)

are related to E
(
C(λ)

n

)
by the formula

E
(
Ĉ(λ)

n

) = log

(
λ(2λ)n

(n + λ)n!

)
+

	(λ)(n + λ)n!√
π	

(
λ + 1

2

)
(2λ)n

E
(
C(λ)

n

)
, (13)

which readily follows from the previous definitions by taking into account the orthogonality
relation (8).

The simplest particular cases of Gegenbauer polynomials are the Chebyshev polynomials
of the first and second kinds

Tn(x) = lim
λ→0

n!

(2λ)n
C(λ)

n (x), Un(x) = C(1)
n (x). (14)

For both of these families, information entropies can be computed in a closed analytical form,
the results being [7, 8]

E(T̂n) =
{

0 if n = 0,

log 2 − 1 if n �= 0,
(15)

E(Ûn) = − n

n + 1
. (16)
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In the λ = 2 case, it was first proved in [10] that

E
(
Ĉ(2)

n

) = − log

(
3(n + 1)

n + 3

)
− n(n2 + 2n − 1)

(n + 1)(n + 2)(n + 3)
− 2√

(n + 1)3(n + 3)3

T ′′′
n+2(ξ)

T
′′
n+2(ξ)

, (17)

where

ξ = n + 2√
(n + 1)(n + 3)

, (18)

and this result was later simplified to [11]

E
(
Ĉ(2)

n

) = − log

(
3(n + 1)

n + 3

)
− n3 − 5n2 − 29n − 27

(n + 1)(n + 2)(n + 3)
− 1

n + 2

(
n + 3

n + 1

)n+2

. (19)

In the same work [11], it was also obtained the following generalization of (17) to arbitrary
integer values of the parameter, λ = l ∈ N:

E
(
Ĉ(l)

n

) = −snl − rnl

2l−2∑
j=1

(
1 − ξ 2

j

)H(ξj )

P ′(ξj )

Ĉ
(l+1)
n−1 (ξj )

Ĉ
(l)
n (ξj )

, (20)

where snl and rnl are known constants depending only on n and l, the auxiliary polynomials P
and H are defined from the sequence {Pk} (degPk = k) generated by the recurrence relation

Pk+1(x) = (2l − 2k − 3)xPk(x) − (n + k + 1)(n + 2l − k − 1)(1 − x2)Pk−1(x) (21)

from the initial values P−1(x) = 0, P0(x) = 1 through the formulae

P(x) = P2l−2(x), H(x) =
2l−2∑
s=0

(−1)sPs−1(x)P2l−s−3(x), (22)

and ξj (j = 1, 2, . . . , 2l − 2) denote the zeros of P. The explicit expression of the polynomial
P was later found to be [12]

P(x) = (−1)l−1(n + 2l − 1)!

(n + l)n!

l−1∑
µ=0

(1 − l)µ(l)µ(1/2)µ

(1 − n − l)µ(1 + n + l)µµ!
(1 − x2)l−1−µ. (23)

Regretfully, (20) is not easy to use in practice. Furthermore, it is not a completely
analytical formula save for small values of l since, as we readily see from (23), the zeros ξj of
P have to be determined numerically when l � 6.4

As first pointed out in [13], the entropy of Chebyshev polynomials of the first and second
kinds can be easily computed by the direct calculation of the corresponding integrals by using
the well-known trigonometric representations

Tn(cos θ) = cos nθ, Un(cos θ) = sin(n + 1)θ

sin θ
, (24)

with x = cos θ . Motivated by this observation, in the present paper we aim at evaluating the
entropic integral E

(
C(λ)

n

)
for general values of the parameter λ using representations of the

same kind for the Gegenbauer polynomials.
We begin by collecting, in section 2, the trigonometric representations of Gegenbauer

polynomials that will be used later on. Our approach is developed in section 3, where we
show that it enables us to find completely analytical expressions for E

(
C(λ)

n

)
, in terms of finite

sums, whenever λ ∈ N. The new results obtained for the information entropy of Gegenbauer
polynomials of integer parameter are summarized in section 4. Finally, in section 5 some
concluding remarks are given and several open problems are pointed out.

4 Likewise, the general expression of E(C
(λ)
n ) given in [9] is not completely analytical save for small values of n,

since it is expressed in terms of the zeros of C
(λ)
n (x).
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2. Trigonometric representations for Gegenbauer polynomials

The most widely known trigonometric representation of the Gegenbauer polynomials is (see
e.g. [14, p 302])

C(λ)
n (cos θ) =

n∑
m=0

d(λ)
m,n ei(n−2m)θ =

n∑
m=0

d(λ)
m,n cos(n − 2m)θ, (25)

where

d(λ)
m,n = (λ)m(λ)n−m

m!(n − m)!
. (26)

Another representation, due to Szegö [6, 15], is

C(λ)
n (cos θ) = c(λ)

n

(sin θ)2λ−1

∞∑
ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ, λ > 0, λ /∈ N, (27)

where

c(λ)
n = 22−2λ	(n + 2λ)

	(λ)	(n + λ + 1)
, α(λ)

ν,n = (1 − λ)ν(n + 1)ν

ν!(n + λ + 1)ν
. (28)

At first sight, this representation seems to be less useful than the previous one, because it
contains infinitely many terms. Moreover, it is supposed not to hold when λ ∈ N. However, it
is not difficult to prove that the validity of (27) extends to the case when λ is a positive integer.

Proposition 1. The Szegö representation (27) holds true when λ ∈ N. In this case, it reads

C(λ)
n (cos θ) = c(λ)

n

(sin θ)2λ−1

λ−1∑
ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ. (29)

Proof. If λ ∈ N then α(λ)
ν,n = 0 when ν � λ, so that (27) reduces to (29). We will prove this

equality by induction on λ. When λ = 1, (29) is obviously true since it reduces to the second
equation in (24), the well-known trigonometric representation for the Chebyshev polynomials
of the second kind. Now, assume that the result holds for λ = m − 1 (m ∈ N). We take
advantage of the following recurrence relation for the Gegenbauer polynomials [6, equation
(4.7.27)]:

nC(λ)
n (x) = (2λ + n − 1)xC

(λ)
n−1(x) − 2λ(1 − x2)C

(λ+1)
n−2 (x), (30)

which in a trigonometric form (x = cos θ) can be restated as

C(λ)
n (cos θ) = 1

2(λ − 1) sin2 θ

[
(2λ + n − 1) cos θC

(λ−1)
n+1 (cos θ) − (n + 2)C

(λ−1)
n+2 (cos θ)

]
.

(31)

Using this formula for λ = m and substituting (29) on the right-hand side we arrive at

C(m)
n (cos θ) = 2c(m)

n

(sin θ)2m−1

[
cos θ

m−2∑
ν=0

α
(m−1)
ν,n+1 sin(n + 2ν + 2)θ

− n + 2

n + m + 1

m−2∑
ν=0

α
(m−1)
ν,n+2 sin(n + 2ν + 3)θ

]

= c(m)
n

(sin θ)2m−1

[
m−2∑
ν=0

α
(m−1)
ν,n+1 sin(n + 2ν + 3)θ +

m−2∑
ν=0

α
(m−1)
ν,n+1 sin(n + 2ν + 1)θ
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− 2(n + 2)

n + m + 1

m−2∑
ν=0

α
(m−1)
ν,n+2 sin(n + 2ν + 3)θ

]

= c(m)
n

(sin θ)2m−1

m−1∑
ν=0

(
α

(m−1)
ν−1,n+1 + α

(m−1)
ν,n+1 − 2(n + 2)

n + m + 1
α

(m−1)
ν−1,n+2

)
× sin(n + 2ν + 1)θ, (32)

where in the last step we have used that α
(m−1)
m−1,n+1 = 0 and α

(m−1)
ν,n+1 = 0 whenever ν < 0. A

straightforward calculation shows that

α
(m−1)
ν−1,n+1 + α

(m−1)
ν,n+1 − 2(n + 2)

n + m + 1
α

(m−1)
ν−1,n+2 = α(m)

ν,n , (33)

and (29) is thus proved to hold also for λ = m. �

The fact that the sum in (27) terminates after a finite number of terms when λ ∈ N

suggests that Szegö’s representation may be useful to evaluate the entropy of Gegenbauer
polynomials of integer parameter. Accordingly, in what follows we shall assume that λ ∈ N

unless otherwise indicated.

3. Evaluation of the entropic integral

With the change of variable x = cos θ , the integral (9) takes the form

E
(
C(λ)

n

) = −
∫ π

0

(
C(λ)

n (cos θ)
)2

log
(
C(λ)

n (cos θ)
)2

sin2λ θ dθ. (34)

Using Szegö’s representation (29) for one of the two Gegenbauer polynomials in(
C(λ)

n (cos θ)
)2

, (34) can be rewritten as

E
(
C(λ)

n

) = −1

2
c(λ)
n

λ−1∑
ν=0

α(λ)
ν,n

(
J (λ)

ν,n − J
(λ)
ν+1,n

)
, (35)

where

J (λ)
ν,n :=

∫ π

0
C(λ)

n (cos θ) cos(n + 2ν)θ log
(
C(λ)

n (cos θ)
)2

dθ. (36)

Now, using the standard representation (25) we have that

C(λ)
n (cos θ) cos(n + 2ν)θ = 1

2

n∑
m=0

d(λ)
m,n cos 2(m + ν)θ +

1

2

n∑
m=0

d(λ)
m,n cos 2(n − m + ν)θ. (37)

Taking into account the symmetry property d(λ)
m,n = d

(λ)
n−m,n, which readily follows from the

explicit expression of the coefficients d(λ)
m,n, the previous equation simplifies to

C(λ)
n (cos θ) cos(n + 2ν)θ =

n∑
m=0

d(λ)
m,n cos 2(m + ν)θ, (38)

so that

J (λ)
ν,n =

n∑
m=0

d(λ)
m,n

∫ π

0
cos 2(m + ν)θ log

(
C(λ)

n (cos θ)
)2

dθ. (39)

Defining the integrals

I (λ)
m,n :=

∫ π

0
cos(2mθ) log

(
C(λ)

n (cos θ)
)2

dθ, (40)
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from (35) and (39) we find that E
(
C(λ)

n

)
is given by

E
(
C(λ)

n

) = −1

2
c(λ)
n

λ−1∑
ν=0

α(λ)
ν,n

n∑
m=0

d(λ)
m,n

(
I (λ)
ν+m,n − I

(λ)
ν+1+m,n

)
. (41)

An alternative expression for the entropic integral E
(
C(λ)

n

)
which turns out to be more

convenient in practice can be obtained by noting that

E
(
C(λ)

n

) = −1

2
c(λ)
n

λ−1∑
ν=0

α(λ)
ν,n

{
n∑

m=0

d(λ)
m,nI

(λ)
ν+m,n −

n+1∑
m=1

d
(λ)
m−1,nI

(λ)
ν+m,n

}

= −1

2
c(λ)
n

λ−1∑
ν=0

α(λ)
ν,n

{
n∑

m=1

(
d(λ)

m,n − d
(λ)
m−1,n

)
I (λ)
ν+m,n + d

(λ)
0,nI

(λ)
ν,n − d(λ)

n,nI
(λ)
ν+n+1,n

}
. (42)

According to (26), d(λ)
m,n = 0 when −λ < m < 0 or n < m < n + λ. Let us restrict initially to

the case when λ �= 1, so that d
(λ)
−1,n = 0 and d

(λ)
n+1,n = 0. This allows us to write the previous

formula in the more compact form

E
(
C(λ)

n

) = −1

2
c(λ)
n

λ−1∑
ν=0

n+1∑
m=0

α(λ)
ν,n

(
d(λ)

m,n − d
(λ)
m−1,n

)
I (λ)
ν+m,n

= −1

2
c(λ)
n

λ−1∑
ν=0

n+1+ν∑
m=ν

α(λ)
ν,n

(
d

(λ)
m−ν,n − d

(λ)
m−ν−1,n

)
I (λ)
m,n. (43)

Using again that d(λ)
m,n = 0 when −λ < m < 0 as well as when n < m < n + λ, we can extend

the lower and upper limits in the inner summation to 1 and n + λ − 1, respectively, provided
that the terms m = 0 and m = n + λ are treated separately. Thus we find that

E
(
C(λ)

n

) = −1

2
c(λ)
n

(
α

(λ)
0,nd

(λ)
0,nI

(λ)
0,n − α

(λ)
λ−1,nd

(λ)
n,nI

(λ)
n+λ,n +

n+λ−1∑
m=1

β(λ)
m,nI

(λ)
m,n

)
, (44)

where

β(λ)
m,n =

λ−1∑
ν=0

α(λ)
ν,n

(
d

(λ)
m−ν,n − d

(λ)
m−ν−1,n

)
. (45)

It can be seen that (44) also holds when λ = 1 by noting that in this case its right-hand side
coincides with that of (42).

In order to apply (44), we need to evaluate the integrals I (λ)
m,n with 0 � m � n + λ. This

goal can be achieved by means of complex integration techniques, which enable us to obtain
the following result.

Theorem 1. For λ ∈ N,

I
(λ)
0,n = 2π log

(
(λ)n

n!

)
(46)

and, when m � 1,

I (λ)
m,n = (2λ − 1)π

m
+

π

(2m)!

d2m

dz2m

(
log

λ−1∑
ν=0

α(λ)
ν,n(z

2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

. (47)
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Proof. Taking into account that C(λ)
n (−x) = (−1)nC(λ)

n (x), (40) can be written as

I (λ)
m,n = 1

2

∫ 2π

0
cos(2mθ) log

∣∣C(λ)
n (cos θ)

∣∣2dθ

=
∫ 2π

0
cos(2mθ) log

∣∣C(λ)
n (cos θ)

∣∣dθ

=
∫ 2π

0
cos(2mθ) log

∣∣einθC(λ)
n (cos θ)

∣∣dθ, (48)

where in the last step the factor einθ has been introduced for later convenience. Using the
Szegö representation (29) for the Gegenbauer polynomial C(λ)

n (cos θ), the previous equation
reads

I (λ)
m,n =

∫ 2π

0
cos(2mθ) log

∣∣∣∣∣ c(λ)
n einθ

sin2λ−1 θ

λ−1∑
ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ

∣∣∣∣∣ dθ. (49)

We will compute the integral

I(λ)
m,n =

∫ 2π

0
cos(2mθ) log

(
c(λ)
n einθ

sin2λ−1 θ

λ−1∑
ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ

)
dθ, (50)

whose real part equals I (λ)
m,n. Introducing the change of variable z = exp(iθ), we arrive at

I(λ)
m,n = 1

2i

∮
|z|=1

z4m + 1

z2m+1
log q(z) dz, (51)

where

q(z) = znC(λ)
n

(
z + z−1

2

)
= c(λ)

n 22λ−2(−1)λ

∑λ−1
ν=0 α(λ)

ν,n(z
2n+2λ+2ν − z2λ−2ν−2)

(1 − z2)2λ−1
. (52)

The singularities of the integrand are z = 0, which is a pole of order 2m + 1, and all the zeros
of q(z), which are branch points. If {xn,j }nj=1 denote the zeros of C(λ)

n (x), which are known to
be simple, real and located in (−1, 1), then the zeros {zn,j }2n

j=1 of the function q(z) are

zn,j+ n
2 ∓ n

2
= exp(i arccos xn,j ) = xn,j ± i

√
1 − x2

n,j , j = 1, 2, . . . , n. (53)

This means that the {zn,j }2n
j=1 are all located on the unit circle, which can also be seen from

the fact that z = exp(i arccos x) maps (−1, 1) onto the unit circle. Therefore, the integrand
of (51) has 2n branch points located on the contour of integration. To avoid this difficulty we
consider the same integral along the slightly different contour 	 (see figure 1), which is also
closed. Note that the logarithmic branches can be chosen to go from the branch points to the
exterior of the unit disk, so that 	 does not cross them. Since the only singularity inside 	 is
z = 0, we now have∮

	

z4m + 1

z2m+1
log q(z) dz = 2π i Res

(
z4m + 1

z2m+1
log q(z), z = 0

)
. (54)

The integral along 	 can be decomposed as∮
	

z4m + 1

z2m+1
log q(z) dz =

2n∑
j=1

(∫
εj

z4m + 1

z2m+1
log q(z) dz +

∫
γj

z4m + 1

z2m+1
log q(z) dz

)
, (55)
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ε1

Re

Im

1

1

γ2n

γ

z

ε i

n,2n

γ
i

zn,1

n,i 1z
Γ

Figure 1. Integration contour used to avoid the branch points on the unit circle.

where εj denotes the arc of the circumference of radius ε that surrounds the branch point zn,j

and γj denotes the arc on the unit circle that connects εj and εj+1 (γ2n connects ε2n and ε1).
Parameterizing z = zn,j + ε eiθ , we find that∫

εj

z4m + 1

z2m+1
log q(z) dz =

∫
εj

(zn,j + ε eiθ )4m + 1

(zn,j + ε eiθ )2m+1
log q(zn,j + ε eiθ ) iε eiθ dθ −→

ε→0
0, (56)

where we have used that x log x → 0 as x → 0. Thus, taking the limit ε → 0 in (55), we
conclude that ∮

|z|=1

z4m + 1

z2m+1
log q(z) dz =

∮
	

z4m + 1

z2m+1
log q(z) dz. (57)

Taking into account that the residue of a meromorphic function h(z) in a pole z0 of order
2m + 1 is given by

Res(h(z), z = z0) = 1

(2m)!

d2m

dz2m
((z − z0)

2m+1h(z))

∣∣∣∣
z=z0

, (58)

use of (54) and (57) into (51) leads to

I(λ)
m,n = π

(2m)!

d2m

dz2m
[(z4m + 1) log q(z)]

∣∣∣∣
z=0

. (59)

In the case m = 0, the previous equation reduces to

I(λ)
0,n = 2π log q(0) = 2π log

(
c(λ)
n 22λ−2(−1)λ+1α

(λ)
λ−1,n

)
, (60)

so that

I
(λ)
0,n = 2π log

∣∣c(λ)
n 22λ−2α

(λ)
λ−1,n

∣∣ = 2π log

(
(λ)n

n!

)
, (61)

which proves the first part of the theorem5. On the other hand, if m � 1 then we readily see
from (59) that I(λ)

m,n ∈ R, so I (λ)
m,n = I(λ)

m,n. Furthermore, in this case the factor (z4m + 1) on

5 This part can also be proved using the mean value theorem for harmonic functions (cf [7, section VI]).
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the right-hand side of (59) can be omitted, since at z = 0 its value equals unity while all its
derivatives do vanish. We thus find that

I (λ)
m,n = π

(2m)!

d2m

dz2m

[
log

(∑λ−1
ν=0 α(λ)

ν,n(z
2n+2λ+2ν − z2λ−2ν−2)

(1 − z2)2λ−1

)]∣∣∣∣∣
z=0

, (62)

and (47) follows on noting that

d2m

dz2m
(log(1 − z2))

∣∣∣∣
z=0

= d2m

dz2m

(
−

∞∑
k=1

z2k

k

)∣∣∣∣∣
z=0

= − (2m)!

m
, (63)

when m �= 0. �
The fact that the Szegö representation (29) has a finite number of terms plays an essential

role in the proof of theorem 1. Although we are mainly interested in evaluating the integrals
I (λ)
m,n when λ ∈ N, it is worth pointing out that these integrals can be calculated in a similar way

for all possible values of λ, provided that we use the standard trigonometric representation
(25) instead of the Szegö representation for the Gegenbauer polynomial inside the logarithm.
This generalization is contained in the next theorem.

Theorem 2. For λ ∈ R, λ > − 1
2 ,

I
(λ)
0,n = 2π log

(
(λ)n

n!

)
(64)

and, when m � 1,

I (λ)
m,n = π

(2m)!

d2m

dz2m

log
n∑

j=0

d
(λ)
j,nz

2n−2j

∣∣∣∣∣∣
z=0

. (65)

Proof. We proceed as in the proof of theorem 1, but now we use the complex form of the
standard trigonometric representation (25) for the Gegenbauer polynomial C(λ)

n (cos θ) in (48).
Thus we arrive at

I (λ)
m,n = π

(2m)!

d2m

dz2m

(z4m + 1) log

 n∑
j=0

d
(λ)
j,nz

2n−2j

∣∣∣∣∣∣
z=0

, (66)

from which (64) and (65) readily follow. �
In order to carry out the sums in (44), the next step is to obtain closed formulae for the

derivatives I (λ)
m,n with 1 � m � n + λ. Despite its greater generality, theorem 2 turns out to

be less useful than theorem 1, because (47) expresses the integrals in terms of the logarithm
of a polynomial that has 2λ terms, while in (65) they are given in terms of the logarithm of
a polynomial with n + 1 terms. As we shall see, the difficulty in obtaining a closed formula
for the derivatives of such functions increases with the number of terms in the polynomial.
Therefore, if we want an expression of I (λ)

m,n for a fixed value of λ and any n ∈ N theorem 1 is
more helpful, particularly for small values of λ.

In the case λ = 1 we readily note from (47) that, if 1 � m � n + 1, then

I (1)
m,n = π

m
+

π

(2m)!

d2m

dz2m
(log(1 − z2n+2))

∣∣∣∣
z=0

= π

m
+

π

(2m)!

d2m

dz2m

(
−

∞∑
k=1

z(2n+2)k

k

)∣∣∣∣∣
z=0

= π

(
1

m
− δm,n+1

)
. (67)
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When λ � 2, the polynomial inside the logarithm has more terms and the above trick does not
work. However, we can obtain closed formulae for the derivatives in (47) by means of Faà di
Bruno’s formula for the derivatives of the composition of two functions, which states that (see
e.g. [16])

dmf (g(z))

dzm
= m!

m∑
k=0

f (k)(g(z))
∑

k1,k2,...,km

m∏
j=1

[g(j)(z)]kj

(j !)kj kj !
, (68)

where the inner summation is extended over all partitions satisfying

k1 + k2 + · · · + km = k, k1 + 2k2 + · · · + mkm = m. (69)

This formula enables us to find explicit expressions for I (λ)
m,n with λ � 2, as stated in the

following two propositions.

Proposition 2. In the case λ = 2, when 1 � m � n + 2,

I (2)
m,n = π

m

[
3 −

(
n + 3

n + 1

)m]
+ π

n + 3

n + 1
δm,n+2. (70)

Proof. In this case, application of Faà di Bruno’s formula (68) to the derivatives in (47) gives6

d2m

dz2m

(
log

1∑
ν=0

α(2)
ν,n(z

2n+4+2ν − z2−2ν)

)∣∣∣∣∣
z=0

= (2m)!
2m∑
k=1

dk

dzk
(log z)

∣∣∣∣
z=−α

(2)
1,n

×
∑

k1,k2,...,k2m

2m∏
j=1

[
dj

dzj

(∑1
ν=0 α(2)

ν,n(z
2n+4+2ν − z2−2ν)

)∣∣
z=0

]kj

(j !)kj kj !
. (71)

On the one hand, for k � 1,

dk

dzk
(log z) = (−1)k+1(k − 1)!

zk
, (72)

so that

dk

dzk
(log z)

∣∣∣∣
z=−α

(2)
1,n

= − (k − 1)!(
α

(2)
1,n

)k . (73)

On the other hand, all the derivatives of the polynomial in (71) vanish at z = 0 except when
j = 2 and j = 2n + 4, so we must set kj = 0 if j �= 2 and j �= 2n + 4. Conditions (69) then
read

k2 + k2n+4 = k, 2k2 + (2n + 4)k2n+4 = 2m. (74)

Since k2 and k2n+4 are non-negative integers, these equations only admit the solution
k2n+4 = 0, k2 = k = m when m � n + 1, while in the case m = n + 2 we have to add
the solution k2n+4 = k = 1, k2 = 0 to the previous one. Therefore, (71) simplifies to

d2m

dz2m

(
log

1∑
ν=0

α(2)
ν,n(z

2n+4+2ν − z2−2ν)

)∣∣∣∣∣
z=0

= −(2m)!

[
1

m

(
−α

(2)
0,n

α
(2)
1,n

)m

+
α

(2)
0,n

α
(2)
1,n

δm,n+2

]
, (75)

and the result follows using the second equation in (28). �

6 Note that attending to (69) k = 0 corresponds to m = 0, so we can start the sum in k from 1.
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Proposition 3. For any λ ∈ N, λ � 3, when 1 � m � n + λ,

I (λ)
m,n = (2λ − 1)π

m
− π

α
(λ)
0,n

α
(λ)
λ−1,n

δm,n+λ

−π

(
α

(λ)
λ−3,n

α
(λ)
λ−2,n

)m m∑
k=1

[m/3]∑
k6=0

[m/4]∑
k8=0

· · ·
[m/(λ−1)]∑
k2(λ−1)=0

(
−

(
α

(λ)
λ−2,n

)2

α
(λ)
λ−1,nα

(λ)
λ−3,n

)k

(76)

× (k − 1)!(
2k − m +

∑λ−3
r=1 rk2r+4

)
!
(
m − k − ∑λ−3

s=1 (s + 1)k2s+4
)
!

×
λ−1∏
j=3

1

(k2j )!

(
−α

(λ)
λ−1−j,n

(
α

(λ)
λ−2,n

)j−2(
α

(λ)
λ−3,n

)j−1

)k2j

, (76)

where in the upper limits of the summations over k6, k8, . . . , k2(λ−1) the square brackets denote
the integer part of the expression within.

In particular, in the case λ = 3, when 1 � m � n + 3,

I (3)
m,n = π

m
[5 − 2	(f (n)m)] − π

(n + 4)(n + 5)

(n + 1)(n + 2)
δm,n+3, (77)

where

f (n) = (n + 1)(n + 5) + i
√

3(n + 1)(n + 5)

(n + 1)(n + 2)
. (78)

Proof. In the general case (λ ∈ N, λ � 3), application of Faà di Bruno’s formula (68) to the
derivatives in (47) and use of (72) lead to

d2m

dz2m

(
log

λ−1∑
ν=0

α(λ)
ν,n(z

2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

= − (2m)!
2m∑
k=1

(k − 1)!(
α

(λ)
λ−1,n

)k ∑
k1,k2,...,k2m

2m∏
j=1

[
dj

dzj

(∑λ−1
ν=0 α(λ)

ν,nz
2n+2λ+2ν

)∣∣
z=0

]kj

(j !)kj kj !

− (2m)!
2m∑
k=1

(k − 1)!(
α

(λ)
λ−1,n

)k ∑
k1,k2,...,k2m

2m∏
j=1

[
dj

dzj

(−∑λ−1
ν=0 α(λ)

ν,nz
2λ−2ν−2

)∣∣
z=0

]kj

(j !)kj kj !
. (79)

In the first term of the right-hand side all derivatives vanish at z = 0 except when j = 2n+ 2λ,
so that kj = 0 whenever j �= 2n + 2λ and conditions (69) simplify to

k2n+2λ = k, (2n + 2λ)k2n+2λ = 2m, (80)

which only admit the solution k2n+2λ = k = 1 when m = n + λ. In the second term the
derivatives that do not vanish are those with j even, 2 � j � 2λ − 2, so that conditions (69)
now read

λ−1∑
r=1

k2r = k,

λ−1∑
s=1

sk2s = m. (81)

Equation (79) thus reduces to

d2m

dz2m

(
log

λ−1∑
ν=0

α(λ)
ν,n(z

2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

= −(2n + 2λ)!
α

(λ)
0,n

α
(λ)
λ−1,n

δm,n+λ

− (2m)!
2m∑
k=1

(k − 1)!(
α

(λ)
λ−1,n

)k ∑
k2,k4,...,k2(λ−1)

2m∏
j=1

(−α
(λ)
λ−1−j,n

)k2j

(k2j )!
. (82)



Information entropy of Gegenbauer polynomials of integer parameter 8357

Finally, we can further simplify the previous expression to obtain (76) by using conditions
(81) to write k2 and k4 in terms of the remaining indices, i.e.

k2 = k6 + 2k8 + · · · + (λ − 3)k2(λ−1) + 2k − m,
(83)

k4 = −2k6 − 3k8 − · · · − (λ − 2)k2(λ−1) + m − k.

Note that in (76) conditions (81) are guaranteed to hold because for the values of the indices
that do not fulfill them we get the inverse of the factorial of a negative integer, which can be
considered to be zero. We have changed the upper limit in the sum over k from 2m to m,
because when m + 1 � k � 2m conditions (81) are not fulfilled.

In the case λ = 3, (76) reduces to

I (3)
m,n = 5π

m
− π

(
α

(3)
0,n

α
(3)
1,n

)m m∑
k=1

(k − 1)!

(2k − m)!(m − k)!

(
−
(
α

(3)
1,n

)2

α
(3)
2,nα

(3)
0,n

)k

− π
α

(3)
0,n

α
(3)
2,n

δm,n+3, (84)

so we need to evaluate a sum of the form
m∑

k=1

(k − 1)!

(2k − m)!(m − k)!
xk =

m−1∑
j=0

(m − j − 1)!

j !(m − 2j)!
xm−j = xm

m−1∑
j=0

(
m − j

j

)
(x−1)j

m − j
. (85)

Using the summation formula [17, equation (5.75)]

m−1∑
j=0

(
m − j

j

)
m

m − j
zj =

(
1 +

√
1 + 4z

2

)m

+

(
1 − √

1 + 4z

2

)m

(86)

and the second equation in (28), we find that

I (3)
m,n = 5π

m
− π

m
[f (n)m + f ∗(n)m] − π

(n + 4)(n + 5)

(n + 1)(n + 2)
δm,n+3, (87)

which is equivalent to (77). �

4. Results for the information entropy

Equations (46), (67), (70) and (77) enable us to derive closed analytical formulae for E
(
C(λ)

n

)
when λ = 1, 2, 3. For λ = 1, after substitution of the corresponding values of the constants
d(λ)

m,n, c
(λ)
n and α(λ)

ν,n (see (26) and (28)), (44) reduces to

E
(
C(1)

n

) = −1

2

(
I

(1)
0,n − I

(1)
n+1,n

)
, (88)

which using (46) and (67) immediately leads to

E
(
C(1)

n

) = E(Un) = π

2

(
1

n + 1
− 1

)
. (89)

When λ = 2, (44) takes the form

E
(
C(2)

n

) = −1

8

(
(n + 1)(n + 3)I

(2)
0,n − (n + 1)2I

(2)
n+2,n − 4

n+1∑
m=1

mI(2)
m,n

)
, (90)

so using (46) and (70) together with the well-known formula for the sum of a geometric series,
n∑

m=1

xm = x(1 − xn)

1 − x
, (91)
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we find that

E
(
C(2)

n

) = −π

8

(
2(n + 1)(n + 3) log(n + 1) +

n3 − 5n2 − 29n − 27

n + 2
+

(n + 3)n+3

(n + 2)(n + 1)n+1

)
.

(92)

Recalling (13), (89) and (92) are readily shown to be equivalent to (16) and (19), respectively.
In the case λ = 3, (44) can be rewritten as

E
(
C(3)

n

) = − 1

128

[
(n + 1)(n + 2)(n + 4)(n + 5)I

(3)
0,n

− (n + 1)2(n + 2)2I
(3)
n+3,n − 12

n+2∑
m=1

m(n2 + 6n + 7 − 2m2)I (3)
m,n

]
. (93)

Substituting (46) and (77) into the above expression, we encounter again the geometric sum,
as well as a sum of the form

∑
m m2xm. Using (91) and the summation formula [18, equation

(5.14.9)]
n∑

m=1

m2xm = x(1 + x) − xn+1[(n + 1)2 − (2n2 + 2n − 1)x + n2x2]

(1 − x)3
, (94)

after a tedious but straightforward calculation we arrive at the following closed analytical
formula for E

(
C(3)

n

)
, which is a new result:

E
(
C(3)

n

) = − π

128

{
2(n + 1)(n + 2)(n + 4)(n + 5) log

(
(n + 1)(n + 2)

2

)
+

n5 − 16n4 − 269n3 − 1200n2 − 2102n − 1250

n + 3

+
2(n + 5)2

(n + 2)(n + 3)
	
[(

(n + 1)(n + 5) + i
√

3(n + 1)(n + 5)

(n + 1)(n + 2)

)n+1

×
(

2n2 + 13n + 14 − i(n + 1)(n + 6)

√
(n + 1)(n + 5)

3

)]}
. (95)

When λ � 4, combination of (44) and (76) provides an expression for the entropy E
(
C(λ)

n

)
in terms of finite sums. For the sake of brevity, in (44) it is convenient to absorb the term
corresponding to I

(λ)
n+λ,n into the sum over m by setting

β
(λ)
n+λ,n := −α

(λ)
λ−1,nd

(λ)
n,n (96)

instead of using (45) with m = n + λ, which would give for β
(λ)
n+λ,n the value −α

(λ)
λ−1,nd

(λ)
n,n +

α
(λ)
0,nd

(λ)
n+λ,n. We thus have that

E
(
C(λ)

n

) = −π

2
c(λ)
n

{
2α

(λ)
0,nd

(λ)
0,n log

(
(λ)n

n!

)
+ α

(λ)
0,nd

(λ)
n,n + (2λ − 1)

n+λ∑
m=1

β(λ)
m,n

m

−
n+λ∑
m=1

m∑
k=1

[m/3]∑
k6=0

[m/4]∑
k8=0

· · ·
[m/(λ−1)]∑
k2(λ−1)=0

β(λ)
m,n

(
α

(λ)
λ−3,n

α
(λ)
λ−2,n

)m (
−

(
α

(λ)
λ−2,n

)2

α
(λ)
λ−1,nα

(λ)
λ−3,n

)k

× (k − 1)!(
2k − m +

∑λ−3
r=1 rk2r+4

)
!
(
m − k − ∑λ−3

s=1 (s + 1)k2s+4
)
!

×
λ−1∏
j=3

1

(k2j )!

(
−α

(λ)
λ−1−j,n

(
α

(λ)
λ−2,n

)j−2(
α

(λ)
λ−3,n

)j−1

)k2j
 . (97)
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Table 1. Exact and numerical values of the entropy E(C
(4)
n ) for 1 � n � 15.

n Exact value Numerical value

1 −7π log(2) + 119
240 π −13.685

2 − 105
8 π log(10) + 580 771

300 000 π −88.862

3 − 75
2 π log(20) + 95

21 π −338.714

4 − 5775
64 π log(35) + 4883 222 845

632 481 024 π −983.613

5 − 385
2 π log(56) + 17 355 685

1806 336 π −2404.173

6 − 3003
8 π log(84) + 6449 434 961

1058 158 080 π −5206.005

7 − 1365
2 π log(120) − 1396 715 852 287

139 218 750 000 π −10 296.556

8 − 75 075
64 π log(165) − 24 757 176 334 716 125

493 018 566 815 808 π −18 974.368

9 −1925 π log(220) − 1200 329 915
9135 984 π −33 031.075

10 − 12 155
4 π log(286) − 325 291 539 600 149 215 255

1172 732 412 725 203 616 π −54 866.421

11 −4641 π log(364) − 31 458 443 588 344 487 293 819
60 436 675 052 957 701 680 π −87 616.538

12 − 440 895
64 π log(455) − 25 537 984 326 378 849 719 971 131

28 270 687 046 875 000 000 000 π −135 295.739

13 −9975 π log(560) − 1779 685 691 911 133 495
1202 109 806 542 848 π −202 952.031

14 − 56 525
4 π log(680) − 36 234 350 694 889 865 223 938 313 068 785

15 613 637 127 259 094 259 005 915 136 π −296 836.555

15 −19 635 π log(816) − 130 243 656 594 168 370 141 034 405
37 115 886 521 993 021 558 784 π −424 587.139

Unlike (20), (97) is completely analytical for all λ ∈ N, which makes it suitable for symbolic
computation. For instance, a Maple implementation of the formula enabled us to obtain the
closed analytical expressions for E

(
C(4)

n

)
and E

(
C(5)

n

)
, with 1 � n � 15, that are displayed in

tables 1 and 2, respectively. In these tables we also provide numerical values of the entropies
obtained from the exact ones, in order that the interested reader can compare them with those
given by numerical algorithms such as that in [5].

5. Summary and conclusions

The problem of obtaining closed analytical formulae for the entropy of orthogonal polynomials
is known to be very difficult, as displayed by the fact that in previous work on the
subject formulae of this kind were only found for the Gegenbauer polynomials of parameter
λ = 0, 1, 2. Here we have presented a new approach to the calculation of the entropy
of Gegenbauer polynomials, based on the use of trigonometric representations for these
polynomials, which has allowed us to explicitly evaluate the entropic integrals by means of
complex analysis techniques. Using this method we have been able to derive in a unified
way closed formulae of E

(
C(λ)

n

)
for λ = 1, 2, 3, the last one being new. Furthermore, when

λ � 4, λ ∈ N, we have obtained completely analytical expressions of the entropy in terms of
finite sums, which easily provide exact values for the entropy using symbolic computation.
The growing complexity in the formulae of E

(
C(λ)

n

)
as λ increases serves as a clear illustration

of the difficulties posed by the calculation of the entropy of orthogonal polynomials.
When the parameter λ is not a positive integer, the Szegö representation (27) of the

Gegenbauer polynomial C(λ)
n has infinitely many terms, so the same happens for expressions

(35) and (41) of the entropic integral E
(
C(λ)

n

)
. It remains open the problem of studying

the convergence behaviour of these series, as well as that of summing up them analytically.
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Table 2. Exact and numerical values of the entropy E(C
(5)
n ) for 1 � n � 15.

n Exact value Numerical value

1 − 525
128 π log(5) + 945

1024 π −17.839

2 − 2475
128 π log(15) + 27 685 925

5225 472 π −147.857

3 − 17 325
256 π log(35) + 61 634 724 075

3373 232 128 π −698.499

4 − 25 025
128 π log(70) + 5573 831 525

115 605 504 π −2457.981

5 − 63 063
128 π log(126) + 338 107 973 281 463

3173 748 645 888 π −7150.909

6 − 143 325
128 π log(210) + 20 887 195

101 376 π −18 162.369

7 − 75 075
32 π log(330) + 1408 430 247 274 269 205

3944 148 534 526 464 π −41 620.201

8 − 294 525
64 π log(495) + 806 559 968 327 725

1438 588 584 576 π −87 940.792

9 − 546 975
64 π log(715) + 29 915 266 041 851 863 399 425

37 527 437 207 206 515 712 π −173 958.634

10 − 969 969
64 π log(1001) + 97 664 804 776 687 286 561 309

96 698 680 084 732 322 688 π −325 775.232

11 − 6613 425
256 π log(1365) + 230 209 361 727 271 224 010 045

212 679 240 849 405 517 824 π −582 478.486

12 − 2723 175
64 π log(1820) + 10 188 450 005 911 283 085

12 635 587 626 401 792 π −1000 899.539

13 − 4352 425
64 π log(2380) − 39 663 465 263 970 548 089 202 600 252 605

249 818 194 036 145 508 144 094 642 176 π −1661 590.212

14 − 6774 075
64 π log(3060) − 717 231 543 067 734 581 588 054 629 334 401 175

306 761 704 661 739 640 893 688 309 874 688 π −2676 220.464

15 − 5148 297
32 π log(3876) − 535 111 116 210 266 542 852 402 527 915 814 650 511

82 233 794 352 493 419 438 828 330 115 762 176 π −4196 611.889

It would be of particular interest to obtain exact analytical expressions for the entropy of
Gegenbauer polynomials of half-integer parameter since, as already mentioned in section 1,
they are needed together with those of the integer case in order to evaluate the information
entropy of spherical and hyperspherical harmonics. Finally, it would also be desirable to
extend the method introduced in this paper to other families of orthogonal polynomials having
trigonometric representations, a line of research that is currently being developed.
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